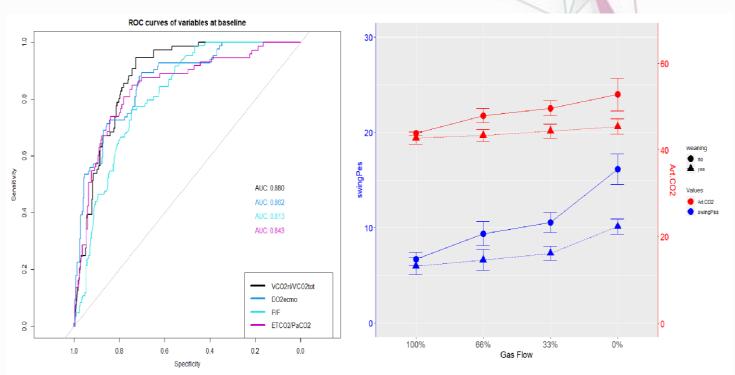
A physiology based veno-venous ECMO weaning

Lazzari S.¹, Romitti F.¹, Busana M.¹, Gattarello S.¹, Steinberg I.¹, Palermo P.¹, Palumbo M.¹,

GÖTTINGE Onnen M.¹, Meissner K.¹, Quintel M.¹, Gattinoni L.¹


Department of Anesthesiology, Emergency and Intensive Care medicine, University of Göttingen, Germany

Background: Despite VV-ECMO being the standard treatment for refractory ARDS, weaning from VV-ECMO is still a rather unstandardized procedure. We put forward an VV-ECMO weaning protocol based on physiological changes in response to a step-wise reduction of the extracorporeal support.

Method: Weaning begins once the patient fits standardized criteria (PaO₂/FiO₂>180 mmHg, PaCO₂<60 mmHg, arterial pH>7.25 and assisted-mode mechanical ventilation). The gas flow is then reduced by 33% steps without changing the blood flow every 30 minutes down to gas flow 0 if the following conditions are maintained: esophageal pressure swing (swingPES)<15 cmH₂O, RR<30 bpm, pH>7.25, PaCO₂<80 mmHg, PaO₂>60 mmHg. We collected respiratory mechanics, hemodynamic and gas exchange variables for each step. Logistic regressions, ROC curve analysis and ANOVA were performed to assess the relation between variables and outcomes.

Results: Thirty-three patients met the inclusion criteria. Twenty-one (64%) were successfully weaned after a median of 9 days (IQR 9) and three (9%) died for causes unrelated to ARDS after a median of 10 days (IQR 15) from weaning. Patients successfully weaned presented at baseline a lower extracorporeal DO₂ (p<0.001, best -value: 350 ml/min) and higher PaO₂/FiO₂ (p<0.001, best-value: 205 mmHg), EtCO₂/PaCO₂ (p<0.001, best-value: 0.80) and VCO₂ of the natural lung/total VCO₂ (p<0.001, best-value: 0.38). During the steps, the proportional PaCO2 increase and the swingPES were strong predictors of weaning success (p<0.001and p<0.001 respectively). When the gas-flow was off, the swingPES (p=0.01, best-value: 13 cmH2O), its variation to the baseline and PaO₂ (p=0.006, best-value: 80 mmHg) were significantly associated to successful weaning.

Conclusions: at baseline, a strong dependence on ECMO is associated to weaning failure. During our protocolized weaning, a strong increase in respiratory drive associated to worse oxygenation and CO₂ clearance prevented a successful weaning.

