INTRO:

- Safe apnoea time is the time before arterial haemoglobin oxygen saturation (SaO₂) decreases to 92%.
- A longer safe apnoea time gives clinicians more time to secure an airway.
- The elderly are more at risk of complications during the induction of anaesthesia, and experience biological changes to the pulmonary system.¹

AIM:

To exam the biological changes of the elderly and consider their effects on the pre-oxygenation process when using high flow nasal oxygenation (HFNO).

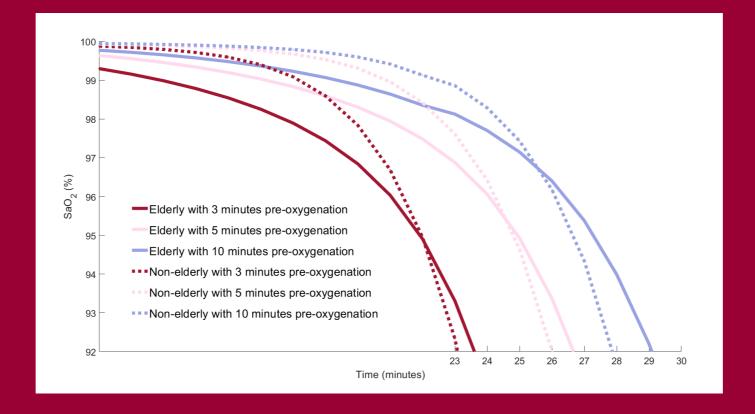
METHODS:

- We compared the safe apnoea time achieved after 3, 5 and 10 minutes of HFNO pre-oxygenation in a robust and validated computational simulation ^{2,3}
- Comparisons were made between 30 elderly virtual subjects and 30 nonelderly virtual subjects using the data from Table 1.

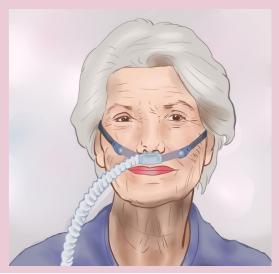
RESULTS:

- Extending the duration of pre-oxygenation improves safe apnoea time.
- The extension is more effective in the elderly than non-elderly.

DISCUSSION:


- This has implications for clinical airway management during general anaesthesia and in resuscitation.
- The model presumed perfect health in the elderly. Comorbidities are likely to influence the findings; this will be the subject of future work.

HFNO Pre-oxygenation Times in the Elderly: A Computational Modelling Study


Rebecca L. Valentine, Marianna Laviola, Jonathan G. Hardman Anaesthesia and Critical Care, Injury, Recovery, and Inflammation Sciences, School of Medicine, University of Nottingham

CONCLUSION:

Extending **pre-oxygenation** may result in a longer safe apnoea time for the **elderly**, when using **high flow nasal oxygenation** devices.

SaO₂ of elderly and non-elderly patients during apnoea after receiving 3, 5 and 10 minutes of pre-oxygenation.

	Non- elderly	Elderly
Weight (kg)	65-75	65-75
FRC (L)	2.5-2.6	2.9-3.1
VO ₂ (mL/min/kg)	3.3-3.7	2.3-3.5
Tidal volume (mL)	390-455	390-455
Ventilation rate (bpm)	10-14	12-25
Anatomical deadspace (mL)	100-200	127-370
Cardiac output (L min ⁻¹)	4.2-7	5.4-6.5
Heart rate (bpm)	60-100	63-76
Anatomical shunt (%)	1-5	12-17
Stroke volume (mL)	70	86.5
Threshold opening pressure of alveolar compartments (cmH ₂ O)	3-12	7.8-16.8

Table 1: Physiological values used to configure thepulmonary and cardiovascular systems of the 60 virtualsubjects .

References:

- 1. Johnson KN, et al., Clinical interventions in aging, 10, 1925 (2015);
- 2. Stolady D, et al., British Journal of Anaesthesia, 126, 889 (2021);
- 3. Laviola M, et al., British Journal of Anaesthesia, 122, e69 (2019);

SCAN FOR ABSTRACT AND MORE:

This work was supported by PhD studentship funding from Fisher & Paykel Healthcare (Auckland, New Zealand).

