Non-carbonic buffer power of whole blood is increased in experimental metabolic acidosis: an in-vitro study

Martin Krbec,^{1,2} Serena Brusatori,¹ Francesco Zadek,^{3,4} Alberto Zanella,^{1,5} František Duška,² and Thomas Langer^{3,4}

- 1 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- 2 Department of Anaesthesia and Intensive Care Medicine, The Third Faculty of Medicine, Charles University and FNKV University Hospital, Prague, Czech Republic.
- 3 Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
- 4 Department of Anesthesia and Intensive Care Medicine, Niguarda Ca' Granda, Milan, Italy.
- 5 Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Introduction

Non-carbonic buffer power (β) of blood is used in the Van Slyke equation to calculate base excess (BE). According to this equation, β depends on hemoglobin and proteins, and is independent from pH.

Objectives

To assess *in-vitro* the effect of metabolic acidosis on β of whole blood.

Methods

- Whole blood of 9 healthy volunteers was used.
- CO₂ tonometery was performed with the original sample and after *in-vitro* acidification.
- Hydrochloric acid (HCl) and lactic acid (HLac) were used to induce moderate (7.5 mEq/L) or severe (15 mEq/L) reduction of strong ion difference (SID).
- $\beta = -d[HCO_3^-]/dpH$ at pH = 7.2 (Figure 1).

Figure 1: An example of CO₂ tonometry.

Figure 2: The increase in β ($\Delta\beta$) as compared to control blood of each volunteer.

- β of control samples was 28.0 ± 2.5 mmol/L.
- In moderate hyperchloremic and lactic acidosis β increased by 2.8 ± 0.9 and 2.3 ± 0.9 mmol/L (p<0.001, Figure 2).
- In severe hyperchloremic and lactic acidosis β increased by 5.6 ± 1.0 and 5.7 ± 1.6 mmol/L (p<0.0001, Figure 2).
- β did not differ significantly when the same degree of acidosis was achieved by a different acid.

Conclusions

The non-carbonic buffer power of whole blood is affected by its acid-base status. In particular, it is significantly increased during *in-vitro* metabolic acidosis. This may affect the calculation of BE.