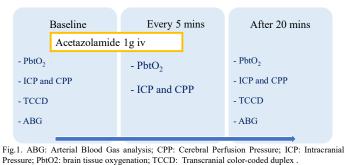


Effects of acetazolamide on brain tissue oxygenation in ICU patients with Acute Brain Injury

Claudia STELLA^{1,2}, Anas HACHLOUF¹, Irene CAVALLI¹, Elisa GOUVÊA BOGOSSIAN¹, Marco ANDERLONI¹, Fabio Silvio TACCONE¹

¹Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium ²Department of Intensive Care, Università Cattolica del Sacro Cuore, Rome, Italy

Acetazolamide is a carbonic anhydrase inhibitor which determines the acidification of intracellular and extracellular environment of the central nervous system.

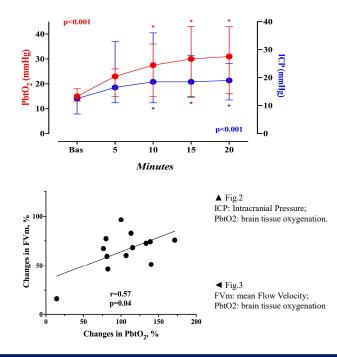

In consideration of the key role of pH in modulating **cerebral vascular tone**, acetazolamide contributes to the regulation of cerebral blood flow (CBF), intracranial pressure (ICP), and thus brain tissue oxygenation (PbtO₂), which are all factors potentially affected in conditions of decreased intracranial compliance.

Hence, the **aim** of the study was to evaluate the impact of acetazolamide on ICP, CBF and $PbtO_2$ in patients with acute brain injury (ABI).

Methods

Inclusion criteria: a) >18 years, b) admitted to ICU for ABI, c) mechanical ventilation in controlled modality, d) continuous monitoring of ICP and PbtO₂, e) baseline ICP < 20mmHg.

The protocol is represented in Fig.1.



Results and discussion

Among the 143 patients screened, 14 fulfilled the eligibility criteria (64% male, median age 44 [35-51] years). The admission diagnosis were: traumatic brain injury (TBI) (n=7, 50%), subarachnoid hemorrhage (SAH) (n=6, 43%) and intracranial hemorrhage (ICH) (n=1, 7%).

Non parametric Friedman's test showed that acetazolamide determined a significant increase of both PbtO₂ and ICP (p < 0.001), which started from ten minutes after the injection and remained stable over the observation time (Fig.2, Tab.1). This is consistent with the hypothesis that acetazolamide increases PbtO₂ mainly through a mechanism of vasodilation, and thus CBF. Consequently to increased CBF, ICP could rise as well, yet in our population only 4 patients needed an adjustment of respiratory rate (+3 [2-3] breaths per minute) to maintain ICP < 25mmHg.

Both transcranial color-coded duplex (TCCD), with the detection of incremented flow velocities (FV) and reduced Pulsatility Index (PI) (Tab.1), and the significant correlation between variation of mean FV (FVm) and of PbtO₂ (r=0.57, p=0.04) (Fig.3) confirmed that acetazolamide causes a significant increase of CBF, and hence PbtO₂.

	Baseline	5 min	10 min	15 min	20 min	<i>p</i> value
PbtO ₂ (mmHg)	15 [15-17]	23 [22-24]	28 [26-29]	30 [29-32]	31 [29-35]	<0.001
ICP (mmHg)	13 [10-14]	17 [15-18]	19 [17-21]	19 [17-24]	19 [16-21]	<0.001
CPP, (mmHg)	85 [81-91]	85 [78-88]	84 [76-87]	83 [79-89]	83 [81-87]	0.08
FVs (cm/s)	109 [98-125]	-	-	-	171 [157-183]	<0.001
FVd (cm/s)	51.00 [49-58]	-	-	-	100 [92-107]	<0.001
FVm (cm/s)	72 [67-78]	-	-	-	127 [116-130]	<0.001
PI	0.74 [0.69-0.89]	-	-	-	0.58 [0.51-0.69]	<0.001
рН	7.44 [7.43-7.45]	-	-	-	7.38 [7.37-7.41]	0.003
PaCO ₂ (mmHg)	50 [49-55]	-	-	-	51 [48-57]	0.32
PaO ₂ (mmHg)	110 [103-135]	-	-	-	119 [112-151]	0.02
Lactate, (mmol/L)	0.8 [0.7-0.9]	-	-	-	0.6 [0.5-0.7]	0.45
PbtO ₂ / PaO ₂	0.14 [0.12-0.15]				0.26 [0.23-0.29]	<0.001

Tab.1

CPP: Cerebral Perfusion Pressure; FV: Flow Velocity (d: diastolic; m: mean; s: systolic); ICP: Ictracranial Pressure; PI: Pulsatility Index.

References

 Severinghaus JW, Cotev S. Carbonic acidosis and cerebral vasodilation after Diamox. Scand J Clin Lab Invest Suppl. 1968;102:1:E.

[2] Vorstrup S, Henriksen L, Paulson OB. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest. 1984 Nov;74(5):1634-9

[3] Wolf ME. Functional TCD: regulation of cerebral hemodynamics--cerebral autoregulation, vasomotor reactivity, and neurovascular coupling. Front Neurol Neurosci. 2015;36:40-56.

[4] Zirak P, Delgado-Mederos R, Marti-Fabregas J, Durduran T. Effects of acetazolamide on the micro- and macrovascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study. Biomed Opt Express. 2010 Nov 19;1(5):1443-1459.

[5] Kaminogo M, Ichikura A, Shibata S, Toba T, Yonekura M. Effect of acetazolamide on regional cerebral oxygen saturation and regional cerebral blood flow. Stroke. 1995 Dec;26(12):2358-60.

Conclusions

Among patients with ABI, the administration of intravenous acetazolamide determined a significant improvement of brain oxygenation along with increased ICP and FV at TCCD, indicative of cerebral vasodilation. These findings suggest that acetazolamide may serve as a valuable therapeutic option for enhancing brain oxygenation in this specific clinical context.